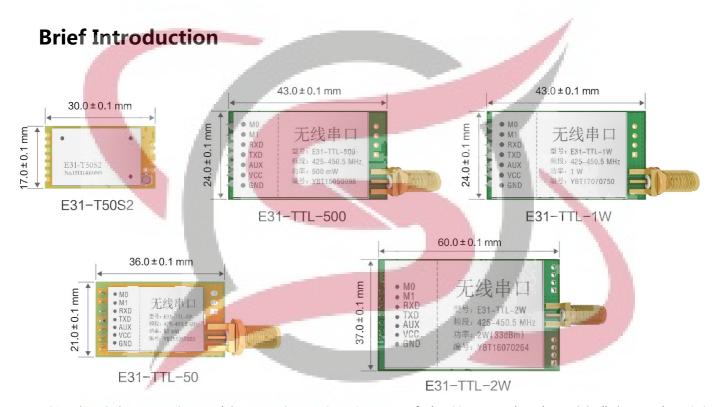


AX5043 Wireless Module



This manual may be modified based on product upgrade, please refer to the latest version.

All rights to interpret and modify this manual belong to Chengdu Ebyte Electronic Technology Co., Ltd.

ELECTRO

Version	Date	Description	Issued by
1.00	2017/12/12	Initial version	huaa

E31 series wireless transceiver modules, operating at 425-450.5MHz (Default: 433MHz) are based on originally imported AX5043 from AXSEM, with transparent transmission available, TTL level, WOR (ultra-low power consumption). They feature half duplex and two kinds of interface: SMD and DIP.

The module has the function of data encryption & compression. The data of the module transmitted over the air features randomness. With the rigorous encryption & decryption, data interception becomes pointless. The function of data compression decreases the transmission time & probability of being interfered, while improving the reliability & transmission efficiency.

E31 series strictly stick to the design rules home and abroad of FCC, CE, CCC and meet the related RF certifications and export standards.

Model	Frequency	Transmitting power	Distance	Packing	Antenna
E31-T50S2	433M	17dBm	2000m	SMD	Stamp hole + IPEX
E31-TTL-50	433M	17dBm	2000m	DIP	SMA-K
E31-TTL-500	433M	27dBm	4000m	DIP	SMA-K
E31-TTL-1W	433M	30dBm	6000m	DIP	SMA-K
E31-TTL-2W	433M	33dBm	8000m	DIP	SMA-K

Contents

1. Features	5
2. Technical Parameters	5
2.1 Electrical Parameters	6
2.1.1 Transmitting Current	
2.1.2 Receiving Current	
2.1.3 Turn-off Current	
2.1.4 Voltage Supply	
2.1.5 Communication Level	
2.2 RF Parameters	
2.2.1 Transmitting Power	
2.2.2 Receiving Sensitivity	
2.2.3 Recommended Working Frequency	
2.3 Tested Parameters	
2.3.1 Tested Distance	
3. Mechanical Characteristics	8
3.1 E31-T50S2	
3.1.1 Dimension	
3.1.2 Pin Definition	
3.2 E31-TTL-50	
3.2.1 Dimension	
3.2.2 Pin Definition	
3.3 E31-TTL-500/E31-TTL-1W	
3.3.1 Dimension	
3.3.2 Pin Definition	
3.4 E31-TTL-2W	
3.4.1 Dimension	
3.4.2 Pin Definition	12
	Mary All
4. Recommended Circuit Diagram	12
FIECTRO	VELC:
5. Function Description	12
5.1 Fixed Transmission	
5.2 Broadcast Transmission	
5.3 Broadcast Address	
5.4 Monitor Address	
5.5 Reset	
5.6 AUX Description	
5.6.1 Indication of UART Output	
5.6.2 Indication of Wireless Transmitting	
5.6.3 Configuration Procedure of Module	
5.6.4 Notes for AUX	15

6.	Operating Mode	 15
6.1	Mode Switch	 15
6.2	Normal Mode (Mode 0)	 16
6.3	Wake-up Mode (Mode 1)	 16
6.4	Power-saving Mode (Mode 2)	 16
6.5	Sleep Mode (Mode 3)	 17
7.	Instruction Format	 17
7.1	Default Parameter	 17
7.2	Reading Operating Parameters	 18
7.3	Reading Version Number	 18
7.4	Reset Instruction	 18
	Parameter Setting Instruction	
8.	Parameter Setting	
9.	Production Guidance	21
9.1	Reflow Soldering Temperature	21
	Reflow Soldering Curve	
10.	FAQ	
	-	
	1 Communication range is too short	
10.	2 Module is easy to damage	22
11.	Important Notes	22
12.	About Us	22

1. Features

• **Narrow band transmission:** Narrow band features high density, long transmitting range and strong anti-interference ability. At same transmitting power, the transmitting range is much longer than others.

- **Ultra-low power consumption:** It supports WOR, which suits for battery power supply. In power-saving mode (Mode 2), the overall power consumption can be regulated by setting receiving response delay and its maximum is 2000ms. The average current is about 30uA.
- **Fixed transmission**: Module can communicate with other modules which work in different channels and addresses. It makes networking and repeater easy. For example: module A transmits AA BB CC to module B (address: 0x00 01, channel: 0x80). The HEX format is 00 01 80 AA BB CC (00 01 refers to the address of module B, and 80 refers to the channel of module B). Then module B receives AA BB CC (only module B).
- **Broadcast transmission:** When the module address is set as 0xFFFF, the module can communicate with other modules in the same channel.
- **FEC:** Forward Error Correction has high coding efficiency & good correction performance. In case of sudden interference, it can correct the interfered data packets proactively, so that the reliability & transmission range are improved correspondingly. Without FEC, those data packets can only be dropped.
- **Sleep mode:** When the module works in sleep mode (Mode 3), it is available for configuration, but not for transmitting & receiving.

 The typical current is few uA in this mode. It can still receive the configuration from the MCU.
- **Watchdog:** With a built-in watchdog, the module runs precise layout and time. Once an exception occurs, the module will restart in 0.107 second, and continue to work according to the previous parameters.
- Application: Compared with 2.4G, it is better in penetration and diffraction but less in speed rate. It is applicable in the open air and places with a few obstacles.

2. Technical Parameters

Model	IC	Size	Size Net weight		Operating humidity	Storage temperature
E31-T50S2	AX5043	17*30mm	6.7±0.1g	-40 ~ 85C°	10% ~ 90%	-40 ~ 125°C
E31-TTL-50	AX5043	21*36mm	6.7±0.1g	-40 ~ 85C°	10% ~ 90%	-40 ~ 125°C
E31-TTL-500	AX5043	24*43mm	8.4±0.1g	-40 ~ 85C°	10% ~ 90%	-40 ~ 125°C
E31-TTL-1W	AX5043	24*43mm	8.4±0.1g	-40 ~ 85C°	10% ~ 90%	-40 ~ 125°C
E31-TTL-2W	AX5043	37*60mm	25±0.1g	-40 ~ 85C°	10% ~ 90%	-40 ~ 125°C

2.1 Electrical Parameters

2.1.1 Transmitting Current

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	64	70	77	mA	When designing current supply circuit, 30% margin is recommended to be remained so as to ensure long-term
E31-TTL-50	64	70	77	mA	stable operation of the whole module. • The current at the instant of transmitting may be high, but
E31-TTL-500	350	380	418	mA	the total energy consumed may be lower due to very short transmitting time.
E31-TTL-1W	598	650	715	mA	When using external antenna, the impedance matching degree at different frequency points between antenna and
E31-TTL-2W	1240	1350	1490	mA	module may affect the transmitting current value at different levels.

2.1.2 Receiving Current

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	12	13	14	mA	The current consumed when the RF chip is only working
				-	at receiving mode is called as receiving current , the tested
E31-TTL-50	12	13	14	mA	receiving current may be higher for some RF chips with
E31-TTL-500	12	13	14	mA	c <mark>ommunic</mark> ation protocol or the developers have loaded
201 112 000					t <mark>heir own p</mark> rotocol to the whole mo <mark>dule</mark> .
E31-TTL-1W	12	13	14	mA	• The current at pure receiving mode will be mA level, the
					users have to realize μA level recei <mark>ving</mark> current through
E31-TTL-2W	16	17	19	mA	firmware development.

2.1.3 Turn-off Current

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	3.0	4.0	5.0	μΑ	The turn-off current means the current consumed by CPU,
E31-TTL-50	3.0	4.0	5.0	μА	RAM, Clock and some registers which remain operating.
E31-TTL-500	4.0	5.0	6.0	μА	SoC is at very low power consumption status.
					The turn-off current is always lower than the current
E31-TTL-1W	4.0	5.0	6.0	μΑ	consumed when the power supply source of the whole
E31-TTL-2W	4.0	5.0	6.0	μΑ	module is at no-load status.

2.1.4 Voltage Supply

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	2.3	3.3	5.2	V DC	If the module stays at maximum voltage for a long time, it may be
E31-TTL-50	2.3	3.3	5.2	V DC	damaged.
E31-TTL-500	3.3	5.0	5.2	V DC	• The power supply pin has certain surge-resistance ability, but the potential pulse higher than the maximum power supply voltage.
E31-TTL-1W	3.3	5.0	5.2	V DC	• The power supply is not advisable to be below 3.0V, or the RF
E31-TTL-2W	3.3	5.0	5.2	V DC	parameters will be influenced at different degree.

2.1.5 Communication Level

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	2.5	3.3	3.6	V DC	•If the module stays at maximum communication level for a long time,
E31-TTL-50	2.5	3.3	3.6	V DC	it may be damaged.
E31-TTL-500	2.5	3.3	3.6	V DC	Modules are compatible with some microcontrollers at 5V
E31-TTL-1W	2.5	3.3	3.6	V DC	communication level. Please refer to practical test or contact us for
E31-TTL-2W	2.5	3.3	3.6	V DC	more information.

2.2 RF Parameters

2.2.1 Transmitting Power

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	16	17	18	dBm	Due to the error of the materials, each LRC component has ±0.1%
		1			error, so error accumulation will occur since multiple LRC
E31-TTL-50	16	17	18	dBm	components are used in the whole RF circuit, and the transmitting
				7	currents will be different at different modules.
E31-TTL-500	26	27	28	dBm	The power consumption can be lowered by lowering the
					transmitting power, but the efficiency of the internal PA will be
E31-TTL-1W	29	30	31	dBm	decreased by lowering transmitting power due to various reasons.
					The transmitting power will be lowered by lowering the power
E31-TTL-2W	32	33	34	dBm	supply voltage.

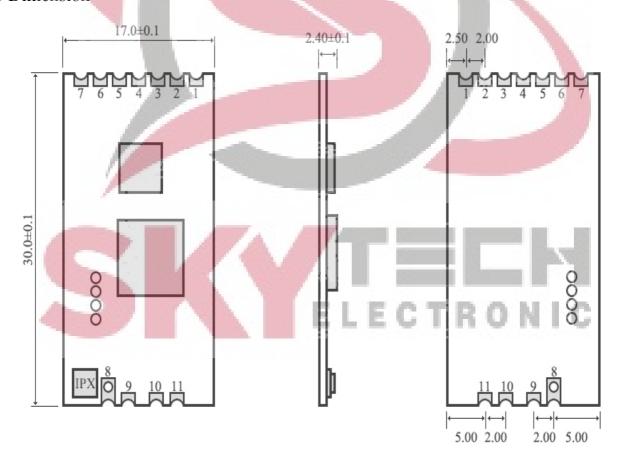
2.2.2 Receiving Sensitivity

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	-125	-126	-127	dBm	The sensitivity is tested under the air data rate 1.3kbps.
E31-TTL-50	-125	-126	-127	dBm	Due to the error of the materials, each LRC component has ±0.1%
					error, so error accumulation will occur since multiple LRC
E31-TTL-500	-125	-126	-127	dBm	components are used in the whole RF circuit, and the transmitting
E31-TTL-1W	-125	-126	-127	dBm	currents will be different at different modules.
E21-11F-14A	-125	-120	-127	UDIII	The receiving sensitivity will be reduced and communication
E31-TTL-2W	-125	-126	-127	dBm	range will be shortened while increasing the air data rate.

2.2.3 Recommended Working Frequency

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	425.0	433.0	450.5	MHz	
E31-TTL-50	425.0	433.0	450.5	MHz	To work within the recommended frequency can assure the
E31-TTL-500	425.0	433.0	450.5	MHz	modules to meet all the parameters. To avoid the crowded integral frequency like 433.0MHz
E31-TTL-1W	425.0	433.0	450.5	MHz	868.0MHz、915MHz etc. is advisable.
E31-TTL-2W	425.0	433.0	450.5	MHz	

2.3 Tested Parameters

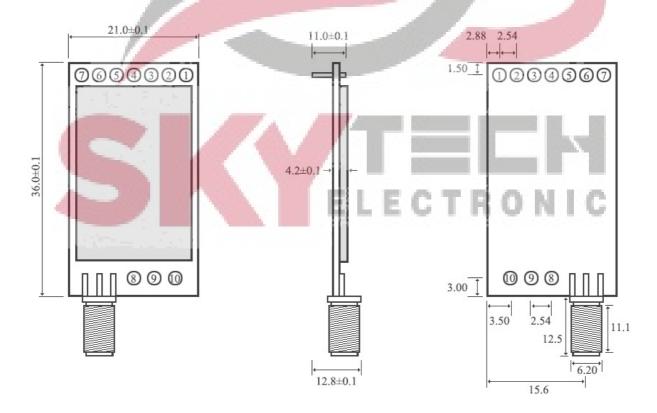

2.3.1 Tested Distance

Model	Min	Тур	Max	Unit	Remarks
E31-T50S2	1800	2000	2200	m	The external antenna used is of 2.5dBi gain and vertical
					polarization. The height is 2.5 meters.
E31-TTL-50	1800	2000	2200	m	The interval between each data packet is 2s, sending 100
					packets with 30 bytes in each packet, the range at data lose rate
E31-TTL-500	3600	4000	4400	m	of lower than 5% is valid range.
					In order to obtain meaningful and reproducible results, we
E31-TTL-1W	5400	6000	6600	m	conducted the tests under in clear weather with little
E31-TTL-2W	7200	8000	8800	m	electromagnetic interference at suburb areas. Distance may be shorter with interference or obstacles.

3. Mechanical Characteristics

3.1 E31-T50S2

3.1.1 Dimension

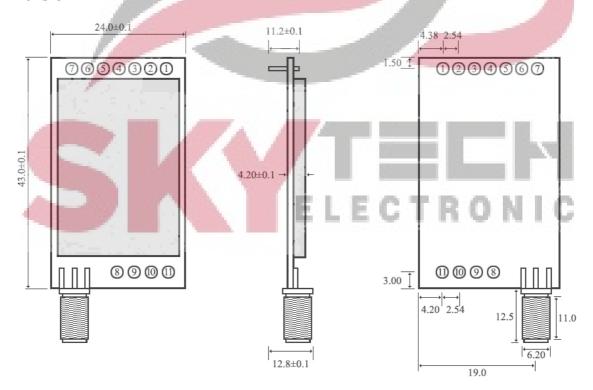


3.1.2 Pin Definition

Pin No.	Pin item	Pin direction Pin application	
1	M0	Input	Work with M1 & decide the four operating modes.
1	MIU	(weak pull-up)	Floating is not allowed, can be ground.
2	M1	Input	Work with M0 & decide the four operating modes.
2	IMIT	(weak pull-up)	Floating is not allowed, can be ground.
2	RXD	Innut	TTL UART inputs, connects to external (MCU, PC) TXD output pin. Can be
3	KXD	Input	configured as open-drain or pull-up input.
4	TVD	Outrot	TTL UART outputs, connects to external RXD (MCU, PC) input pin. Can be
4	TXD	Output	configured as open-drain or push-pull output.
			To indicate module's working status & wakes up the external MCU. During
5	AUX	Output	the procedure of self-check initialization, the pin outputs low level. Can be
	1		configured as open-drain output or push-pull output (Floating is allowed).
6	VCC	Input	Power supply 2.1V-5.5V DC.
7	GND	Input	Ground electrode
8	ANT	Output	Reference places of high frequency signal output
9	GND	Input/ <mark>Output</mark>	Antenna interface (high frequency signal output)
10	GND	Input	Ground electrode
11	GND	Input	Ground electrode

3.2 E31-TTL-50

3.2.1 Dimension

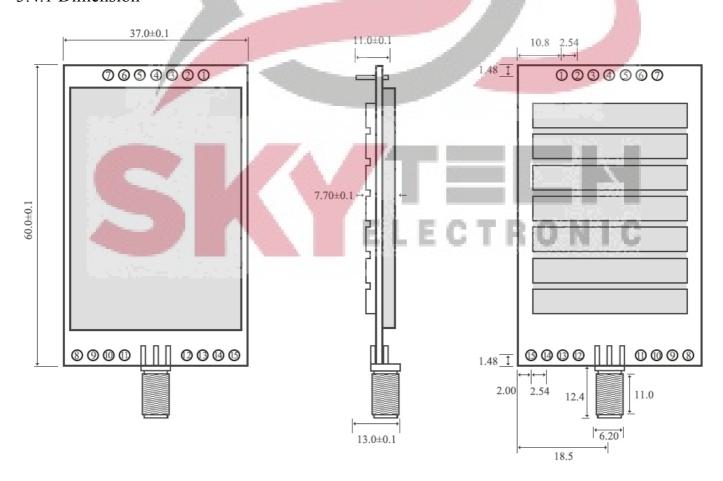


3.2.2 Pin Definition

Pin No.	Pin item	Pin direction	Pin application
1	M0	Input	Work with M1 & decide the four operating modes.
1	IVIU	(weak pull-up)	Floating is not allowed, can be ground.
2	M1	Input	Work with M0 & decide the four operating modes.
2	IVII	(weak pull-up)	Floating is not allowed, can be ground.
2	DVD	Torrid	TTL UART inputs, connects to external (MCU, PC) TXD output pin. Can be
3	RXD	Input	configured as open-drain or pull-up input.
4	TXD		TTL UART outputs, connects to external RXD (MCU, PC) input pin. Can be
4	IXD	Output	configured as open-drain or push-pull output.
			To indicate module's working status & wakes up the external MCU. During
5	AUX	Output	the procedure of self-check initialization, the pin outputs low level. Can be
			configured as open-drain output or push-pull output (Floating is allowed).
6	VCC	Input	Power supply 2.1V-5.5V DC.
7	GND	Input	Ground electrode
8	8 Fixing hole		Fixing hole
9	9 Fixing hole		Fixing hole
10	Fixing hole		Fixing hole

3.3 E31-TTL-500/E31-TTL-1W

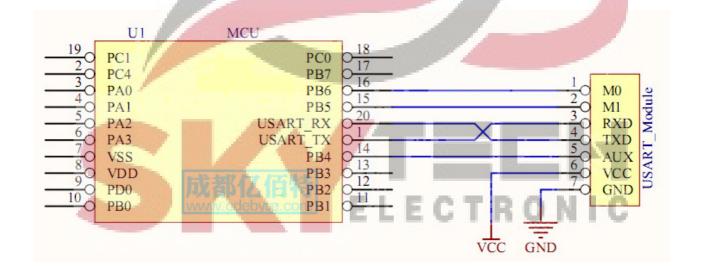
3.3.1 Dimension



3.3.2 Pin Definition

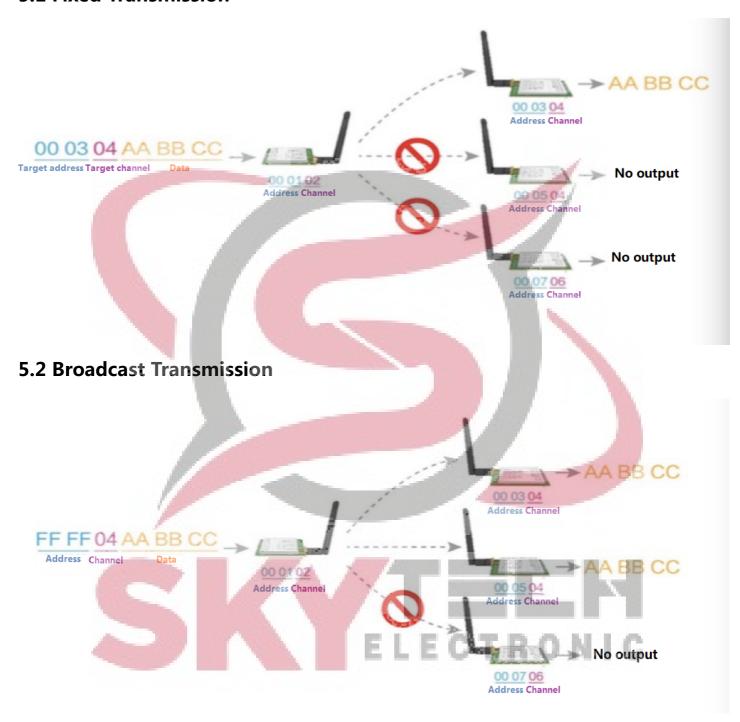
Pin No.	Pin item	Pin direction	Pin application
1	M0	Input	Work with M1 & decide the four operating modes.
1	IVIU	(weak pull-up)	Floating is not allowed, can be ground.
2	M1	Input	Work with M0 & decide the four operating modes.
2	IVIT	(weak pull-up)	Floating is not allowed, can be ground.
2	RXD	Innut	TTL UART inputs, connects to external (MCU, PC) TXD output pin. Can be
3	KXD	Input	configured as open-drain or pull-up input.
4	TVD	Output	TTL UART outputs, connects to external RXD (MCU, PC) input pin. Can be
4	TXD	Output	configured as open-drain or push-pull output.
			To indicate module's working status & wakes up the external MCU. During
5	AUX	Output	the procedure of self-check initialization, the pin outputs low level. Can be
	1		configured as open-drain output or push-pull output (Floating is allowed).
6	VCC	Input	Power supply 2.8V-5.5V DC.
7	GND	Input	Ground
8	Fixing hole	100	Fixing hole
9	Fixing hole		Fixing hole
10	Fixing hole		Fixing hole
11	Fixing hole		Fixing hole

3.4 E31-TTL-2W


3.4.1 Dimension

3.4.2 Pin Definition

Pin No.	Pin item	Pin direction Pin application	
1	N40	Input	Work with M1 & decide the four operating modes.
1	M0	(weak pull-up)	Floating is not allowed, can be ground.
2	N.4.1	Input	Work with M0 & decide the four operating modes.
2	M1	(weak pull-up)	Floating is not allowed, can be ground.
2	DVD	Towns	TTL UART inputs, connects to external (MCU, PC) TXD output pin. Can be
3	RXD	Input	configured as open-drain or pull-up input.
4	77/5	Output	TTL UART outputs, connects to external RXD (MCU, PC) input pin. Can be
4	TXD	Output	configured as open-drain or push-pull output.
			To indicate module's working status & wakes up the external MCU. During
5	AUX	Output	the procedure of self-check initialization, the pin outputs low level. Can be
	All parties		configured as open-drain output or push-pull output (Floating is allowed).
6	VCC	Input	Power supply 2.8V-5.5V DC.
7	GND	Input	Ground
8/9	Fixing hole		Fixing hole
10/11	Fixing hole		Fixing hole
12/13	Fixing hole		Fixing hole
14/15	Fixing hole		Fixing hole


4. Recommended Circuit Diagram

No.	Description (STM8L MCU)
1	The UART module is TTL level. Please connect to MCU of TTL level.
2	For some MCU works at 5VDC, it may need to add 4-10K pull-up resistor for the TXD & AUX pin.

5. Function Description

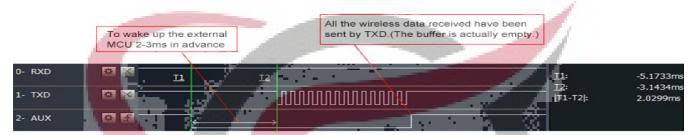
5.1 Fixed Transmission

5.3 Broadcast Address

- For example: Set the address of module A as 0xFFFF or 0x0000, and the channel as 0x04;
- When module A is the transmitter (transparent transmission), all modules under channel 0x04 will receive the data, the purpose of broadcast is realized.

5.4 Monitor Address

- For example: Set the address of module A as 0xFFFF or 0x0000, and the channel as 0x04;
- When module A is the receiver, it can receive the data sent from all modules under channel 0x04, the purpose of monitor is realized.


5.5 Reset

When the module is powered, AUX outputs low level immediately, conducts hardware self-check and sets the operating mode on the basis of the user parameters. During the process, the AUX keeps low level. After the process completed, the AUX outputs high level and starts to work as per the operating mode combined by M1 and M0. Therefore, the user needs to wait the AUX rising edge as the starting point of module's normal work.

5.6 AUX Description

5.6.1 Indication of UART Output

To wake up external MCU:

Timing Sequence Diagram of AUX when TXD pin transmits

5.6.2 Indication of Wireless Transmitting

Buffer (empty): the internal 512 bytes data in the buffer are written to the RFIC (Auto sub package). When AUX=1, the user can input data less than 512 bytes continuously without overflow.

Buffer (not empty): when AUX=0, the internal 512 bytes data in the buffer have not been written to the RFIC completely. If the user starts to transmit data at this circumstance, it may cause overtime when the module is waiting for the user data, or transmitting wireless sub package.

Notes: When AUX = 1, it does not mean that all the UART data of the module have been transmitted already, perhaps the last packet of data is still in transmission.

Timing Sequence Diagram of AUX when RXD pin receives

5.6.3 Configuration Procedure of Module

Only happened when power-on resetting or exiting sleep mode.

Timing Sequence Diagram of AUX when self-check

5.6.4 Notes for AUX

• For function 1 & function 2 mentioned above, the priority should be given to the one with low level output, which means if it meets each of any low level output condition, AUX outputs low level, if none of the low level condition is met, AUX outputs high level.

- When AUX outputs low level, it means the module is busy & cannot conduct operating mode checking. Within 1ms since AUX outputs high level, the mode switch will be completed.
- After switching to new operating mode, it won't be work in the new mode immediately until AUX rising edge 2ms later. If AUX is on the high level, the operating mode switch can be effected immediately.
- When the user switches to other operating modes from mode 3 (sleep mode) or it's still in reset process, the module will reset user parameters, during which AUX outputs low level.

6. Operating Mode

Contents in the table below are the introduction of input status of M1 & M0 and their corresponding mode:

Mode (0-3)	M1	М0	Mode introduction	Remark
Mode 0	0	0	UART and wireless channel are open, transparent	The receiver must work in mode
Normal	U	U	transm <mark>ission is o</mark> n	0 or mode 1.
	1		UART a <mark>nd wirele</mark> ss channel are open. The difference between	
Mode 1	1	0	normal mode and wake-up mode is it will add preamble code	The receiver can work in mode 0,
Wake-up	1	0	automatically before data packet transmission so that it can	mode 1 or mode 2.
			awaken the receiver works in mode 2	
			UART is disabled. Wireless module works at WOR mode	1, the transmitter must work in
Mode 2		0 1		mode 1.
Power-saving	U	100	(wake on radio). It will open the UART and transmit data after	2, transmitting is not allowed in
		1//	receiving the wireless data	this mode.
Mode 3	1	1/1	Parameter cetting	Coo mare in exercting parameter
Sleep	1		Parameter setting	See more in operating parameter.

6.1 Mode Switch

- The user can decide the operating mode by the combination of M0, M1 and M2. The two GPIOs of MCU can be used to switch mode. After modifying M0, M1 or M2, it will start to work in new mode 1ms later if the module is free. If there are any serial data that are yet to finish wireless transmitting, it will start to work in new mode after the UART transmitting finished. After the module receives the wireless data & transmits the data through serial port, it will start to work in new mode after the transmitting finished. Therefore, the mode-switch is only valid when AUX outputs 1, otherwise it will delay.
- For example, in mode 2 or mode 4, if the user inputs massive data consecutively and switches operating mode at the same time, the mode-switch operation is invalid. New mode checking can only be started after all the user's data process completed. It is recommended to check AUX pin out status and wait 2ms after AUX outputs high level before switching the mode.
- If the module switches from other modes to stand-by mode, it will work in stand-by mode only after all the remained data process completed. The feature can be used to save power consumption. For example, when the transmitter works in mode 0, after the external MCU transmits data "12345", it can switch to sleep mode immediately without waiting the rising edge of the AUX pin, also the user's main MCU will go dormancy immediately. Then the module will transmit all the data through wireless transmission & go dormancy 1ms later automatically, which reduces MCU working time & save power.

Likewise, this feature can be used in any mode-switch. The module will start to work in new mode within 1ms after completing present mode task, which enables the user to omit the procedure of AUX inquiry and switch mode swiftly. For example, when switching from transmitting mode to receiving mode, the user MCU can go dormancy before mode-switch, using external interrupt function to get AUX change so that the mode-switch can be realized.

• This operation is very flexible and efficient. It is totally designed on the basis of the user MCU's convenience, at the same time the work load and power consumption of the whole system has been reduced and the efficiency of whole system is largely improved.

6.2 Normal Mode (Mode 0)

Status	When M1 = 0, M0 = 0, module works in mode 0
	The module can receive the user data via serial port, and transmit wireless data package of 58 bytes. When the
	data inputted by user is up to 58 byte, the module will start wireless transmission. During which the user can
	input data continuously for transmission.
100	When the required transmission bytes are less than 58 bytes, the module will wait 3-byte time and treat it as
	data termination unless continuous data inputted by user. Then the module will transmit all the data through
Transmitting	wireless channel.
	When the module receives the first data packet from user, the AUX outputs low level. After all the data are
	transmitted into RF chip and transmission is started, AUX outputs high level.
	At this time, it means that the last wireless data package transmission is started, which enables the user to input
	another 512 bytes conti <mark>nuously. T</mark> he data package transmitted from the module working in mode 0 can only be
	received by the module working in mode 0 or 1.
	The wireless receiving function of the module is on, the data packet transmitted from the module working in
	mode 0 & mode 1 can be received.
Receiving	After the data packet is received, the AUX outputs low level, 5ms later the module starts to transmit wireless
	data through serial port TXD pin.
	After all the wireless data have been transmitted via serial port, the AUX outputs high level.

6.3 Wake-up Mode (Mode 1)

Status	When M1 = 0, M0 = 1, module works in mode 1
	The condition of data packet transmission & AUX function is the same as mode 0.
	The only difference is that the module will add preamble code before each data packet automatically.
Transmitting	The preamble code length depends on the wake-up time set in the user parameters.
	The purpose of the preamble code is to wake up the receiving module that works in mode 2. Therefore, the data
	package transmitted from mode 1 can be received by module in mode 0, mode1 and mode 2.
Receiving	The same as that in mode 0.

6.4 Power-saving Mode (Mode 2)

Status	When M1 = 1, M0 = 0, module works in mode 2
Transmitting	UART is closed, the module cannot receive any serial port data from outside MCU.
Transmitting	Hence the function of wireless transmission is not available for the module working in this mode.
	In mode 2, it is required the data transmitter works in mode 1.
	The wireless module monitors the preamble code at regular time.
	Once it gets the preamble code, it will remain as receiving status and waiting for the completion of receiving the
	entire valid data package.
Dogoiving	Then the AUX outputs low level, 5ms later the serial port is open to transmit received wireless data through TXD.
Receiving	Finally , AUX outputs high level after process completed.
	The wireless module stays in "power-saving – monitoring" working status (polling).
	By setting different wake-up time, the module will have different receiving response delay (2s in maximum) and
	average power consumption (30uA in minimum).
	The user needs to achieve a balance between communication delay time & average power consumption.

6.5 Sleep Mode (Mode 3)

Status	When M1=1, M0=1, module works in mode 3	
Transmitting	N/A	
Receiving	N/A	
Parameter	This mode can be used for parameter setting. It uses serial port 9600 & 8N1 to set module working parameters throu	
setting	specific instruction format. (Please refer to parameters setting for details.)	
Notes	When the mode changes from stand-by mode to others, the module will reset its parameters, during which the AUX keeps	
Notes	low level and then outputs high level after reset completed. It is recommended to check the AUX rising edge for user.	

7. Instruction Format

In sleep mode (Mode 3: M0=1, M1=1,), it supports instructions below.

(Only support 9600 and 8N1 format when setting)

No.	Instruction format	Illustration
1	C0 + working parameters	C0 + 5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be sent in succession. (Save the parameters when power-down)
2	C1+C1+C1	Three C1 are sent in hexadecimal format. The module returns the saved parameters and must be sent in succession.
3	C2 + working parameters	C2 + 5 bytes working parameters are sent in hexadecimal format. 6 bytes in total and must be sent in succession. (Do not save the parameters when power-down)
4	C3+C3+C3	Three C3 are sent in hexadecimal format. The module returns the version information and they must be sent in succession.
5	C4+C4+C4	Three C4 are sent in hexadecimal format. The module will reset one time and they must be sent in succession.

7.1 Default Parameter

Default parameter values : C0 00 00 18 50 44									
Model Frequency		Address	Channel	Air data rate	Baud rate	Parity	Transmitting power		
E31-T50S2	433MHz	0x0000	0x50	1.2kbps	9600	8N1	50mW		

1	Default parameter values : C0 00 00 18 50 44											
Model	Frequency	Address	Channel	Air data rate	Baud rate	Parity	Transmitting power					
E31-TTL-50	433MHz	0x0000	0x50	1.2kbps	9600	8N1	50mW					

		Default parameter values: C0 00 00 18 50 44											
Model	Frequency	Address	ess Channel Air data rate Baud rate Parity				Transmitting power						
E31-TTL-500	433MHz	0x0000	0x50	1.2kbps	9600	8N1	500mW						

	Default parameter values: C0 00 00 18 50 44												
Model	Frequency	Address	Channel	Air data rate	Baud rate	Parity	Transmitting power						
E31-TTL-1W	433MHz	0x0000	0x50	1.2kbps	9600	8N1	1W						

		Default parameter values: C0 00 00 18 50 44												
Model	Frequency	Address	Channel	Air data rate	Baud rate	Parity	Transmitting power							
E31-TTL-2W	433MHz	0x0000	0x50	1.2kbps	9600	8N1	2W							

7.2 Reading Operating Parameters

Instruction format	Description
	In sleep mode (M0=1 , M1=1) ,
C1 · C1 · C1	User gives the module instruction (HEX format): C1 C1 C1,
C1+C1+C1	Module returns the present configuration parameters.
	For example, C0 00 00 18 50 44.

7.3 Reading Version Number

Instruction form	at	Description	
11000		In sleep mode (M0=1 , M1=1) ,	
		User gives the module instruction (HEX format): C3 C3 C3,	
C3+C3+C3		Module returns its present version number, for example C3 31 xx yy.	
		31 here means the module model (E31 series); xx is the version number and yy refers to the other module features.	

7.4 Reset Instruction

Instruction format	Description Description
7000	In sleep mode (M <mark>0=1 , M1</mark> =1) ,
7	User gives the module instruction (HEX format): C4 C4 C4, the module resets for one time.
C4+C4+C4	During the reset process, the module will conduct self-check, AUX outputs low level. After reset completing, the
	AUX outputs high level, then the module starts to work regularly which the working mode can be switched or be
	given another instruction.

7.5 Parameter Setting Instruction

No.	Item		A	0	Description	Remark
0	HEAD	Fix	0xC0 or 0x0	C2, it mean	s this frame data is control command	 Must be 0xC0 or 0xC2 C0: Save the parameters when power-down C2: Do not save the parameters when power-down
1	ADDH	- /	High a	address byt	e of module (Default 00H)	00H-FFH
2	ADDL		Low a	ddress byte	e of module (Default 00H)	00H-FFH
		7 0 0 1	6 0 1 0	A	UART parity bit 8N1 (Default) 8O1 8E1	- UART mode can be different between communication parties
3	SPED	1 5 0 0 0 0 1 1 1	1 0 0 1 1 0 0	3 0 1 0 1 0 1	8N1 (Equal to 00) TTL UART baud rate (bps) 1200bps 2400bps 4800bps 9600 bps (Default) 19200bps 38400bps 57600bps 115200bps	UART baud rate can be different between communication parties The UART baud rate has nothing to do with wireless transmission parameters & won't affect the wireless transmit / receive features.
		2	1	0	Air date rate (bps)	The lower the air date rate, the longer the
		0	0	0	1.2kbps (Default)	transmitting distance, better anti-interference
		0	0	1	2.4kbps	performance and longer transmitting time

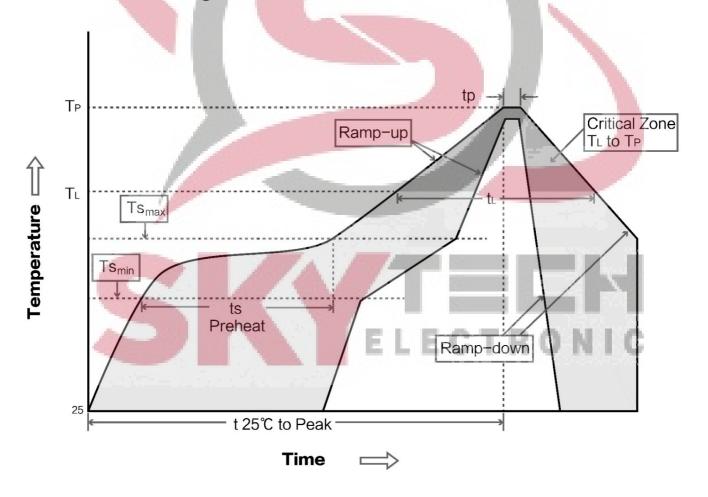
AX5043	Wireless Mod	lule				User Manual of E31 Series Modules			
		0	1	0	4.8kbps	The air date rate must keep the same for both			
		0	1	1	9.6kbps	communication parties.			
		1	0	0	19.2kbps				
		1	0	1	38.4kbps				
		1	1	0	50kbps				
		1	1	1	70kbps				
		7	6	5	N/A	0 Recommended.			
4	CHAN			Comm	unication channel				
			4-0 (410	M + CHAN	*1M), default 17H (433MHz)	● 00H-1FFH 410~441MHz			
		7		Fixed trar	nsmission (Similar to MODBUS)	In fixed transmission mode, the first three bytes of			
		0			nsparent transmission mode	each user's data frame can be used as high/low			
						address and channel. The module changes its			
					41425-12252	address and channel when transmit. And it will			
	1.10	1			Fixed transmission mode	revert to original setting after complete the			
	4			-		process.			
		6			IO drive mode(Default 1))	This bit is used to the module internal pull-up			
		1	TYD	-	bush-pull outputs, RXD pull-up inputs	resistor. It also increases the level's adaptability			
					en-collector outputs, RXD open-collector	in case of open drain. But in some cases, it may			
	- 1	0	TAD and	AUX OPE	inputs	need external pull-up resistor.			
		5	4	3		The transmit & receive module work in mode 0,			
		0	0	0	Wireless wake-up time 250ms (Default)	whose delay time is invalid & can be arbitrary			
		0	0			value.			
				1	500ms	The transmitter works in mode 1 can transmit the			
		0	1	0	750ms	preamble code of the corresponding time			
		0	1	1	1000ms	continuously.			
		1	0	0	1250ms	When the receiver works in mode 2, the time			
		1	0	1	1500ms	means the monitor interval time (wireless wake-			
		1	1	0	1750ms	up). Only the data from transmitter that works in			
5	OPTION	1	1	1	2000ms	mode 1 can be received.			
		2			FEC switch	After turn off FEC, the actual data transmission			
		0			Turn off FEC	rate increases while anti-interference ability			
					Tullion Leo	decreases. Also the transmission distance is			
	- 4		7	1		relatively short.			
		11			Turn on FEC (Default)	Both communication parties must keep on the			
						same pages about turn-on or turn-off FEC.			
		1	0	-	Eduka C	TRONIC			
	-				ransmission power (Approximation)	For E31-T50S2/E31-TTL-50			
		0	0		17dBm (Default)	The external power must make sure the ability of			
		0	1		14dBm	current output more than 200mA and ensure the			
		1	0		10dBm	power supply ripple within 100mV.			
		1	1		7.40	Low power transmission is not recommended due			
		1	1		7dBm	to its low power supply efficiency.			
		1	0	Tra	ansmission power (Approximation)	• For E31-TTL-500			
		0	0		27dPm (Default)	The external power must make sure the ability of			
		U	0		27dBm (Default)	current output more than 1A and ensure the power			
		0	1		24dBm	supply ripple within 100mV.			
		1			21 dD	Low power transmission is not recommended due			
		1	0		21dBm	to its low power supply efficiency.			

AX5043 Wireless Mod	dule				User Manı	ual of E31 Series	Modules				
	1	1	180	Bm							
	1	0	Transmission pow	er (Approxim	ation)	● For E31-TTL-1W					
	0	0	30dBm (Default)		• The ext	ernal power m	ust make sure t	he ability of		
	0	1	270	Bm			·	than 1.5A and	ensure the		
	1	0	24d	Bm		·	upply ripple wi ver transmissio	n is not recomn	nended due		
	1	1	210	Bm		to its lov	w power supply	efficiency.			
	1	0	Transmission power	• For E31	• For E31-TTL-2W						
	0	0	33dBm (Default)		• The ext	The external power must make sure the ability of current output more than 2A and ensure the power supply ripple within 100mV. Low power transmission is not recommended due				
	0	1	30d	Bm							
	1	0	270	Bm							
1.13	1	1	240	Bm		to its lov	w power supply	efficiency.			
4	700		For example: The m	eaning of No	.3 "SPED"	byte					
The binary bi	t of the byte		7 6	5	4	3	2	1	0		
Configure	s by user		0 0	0	1	1	0	1	0		
Mea	ning		UART parity bit 8N1 UART baud rate is			is 9600 Air data rate is 2.4k					

8. Parameter Setting

Corresponding hexadecimal

When the module is in Mode 3 (M0=1 M1=1), the parameter can be set by instruction or software in PC. Please visit www.cdebyte.com to download the software.



9. Production Guidance

9.1 Reflow Soldering Temperature

Profile Feature	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	Sn63/Pb37	Sn96.5/Ag3/Cu0.5
Preheat Temperature min (Tsmin)	100C°	150C°
Preheat temperature max (Tsmax)	150C°	200C°
Preheat Time (Tsmin to Tsmax)(ts)	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	3C°/second max	3C°/second max
Liquidous Temperature (TL)	183C°	217C°
Time (tL) Maintained Above (TL)	60-90 sec	30-90 sec
Peak temperature (Tp)	220-235C°	230-250C°
Aveage ramp-down rate (Tp to Tsmax)	6C°/second max	6C°/second max
Time 25C° to peak temperature	6 minutes max	8 minutes max

9.2 Reflow Soldering Curve

10. FAQ

10.1 Communication range is too short

- The communication distance will be affected when obstacle exists.
- Data lose rate will be affected by temperature, humidity and co-channel interference.
- The ground will absorb and reflect wireless radio wave, so the performance will be poor when testing near ground.
- Seawater has great ability in absorbing wireless radio wave, so performance will be poor when testing near the sea.
- The signal will be affected when the antenna is near metal object or put in a metal case.
- Power register was set incorrectly, air data rate is set as too high (the higher the air data rate, the shorter the distance).
- The power supply low voltage under room temperature is lower than the recommended value, the lower the voltage, the lower the transmitting power.
- Due to antenna quality or poor matching between antenna and module.

10.2 Module is easy to damage

- Please check the power supply source, ensure it is within the recommended value, voltage higher than that will damage the module.
- Please check the stability of power source, the voltage cannot fluctuate too much.
- Please make sure antistatic measure are taken when installing and using, high frequency devices have electrostatic susceptibility.
- Please ensure the humidity is within limited range, some parts are sensitive to humidity.
- Please avoid using modules under too high or too low temperature.

11. Important Notes

- All rights to interpret and modify this manual belong to Ebyte.
- This manual will be updated based on the upgrade of firmware and hardware, please refer to the latest version.
- Please refer to our website for new product information

12. About Us

Technical support: support@cdebyte.com

Documents and RF Setting download link: www.cdebyte.com/en/

Tel: +86-28-61399028 Ext. 812

Fax: 028-64146160

Web: www.cdebyte.com/en/

Address: Innovation Center D347, 4# XI-XIN Road, Chengdu, Sichuan, China